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Abstract Sensor data taken during a human-robot interac-
tion (HRI) have high potential for usage as new, objective
measures of an interaction, either replacing or supplement-
ing survey techniques that are currently most common in
HRI research. Sensor data can be taken in large quantities
quickly, naturally, and discreetly. They also have the po-
tential to reflect a user’s biosignals—information about the
user’s inner state (such as stress and attention) when inter-
acting with the robot. We previously conducted three studies
attempting to use sensor data as a measurement in HRI, with
methodological differences in three different experimental
environments. In this paper, we reanalyze and add new data
to the previous findings under a consistent methodology,
consolidate what correlations we find, and can conclude that
sensor data is a useful metric in HRI across a wide range
of experimental setups and subject pools. We fully describe
the methodology we determined to be most effective, from
selection of sensors to data analysis techniques to HRI ex-
periment setup, as a basis for how this methodology can be
used in other HRI studies. We describe necessary steps in
the analysis of a large amount of sensor data (over 100,000
sets) and how sensor data can be compared with survey and
behavioral data. Based on these correlations, we find that
the most effective sensors are temperature sensors, tactile
sensors, and face distance measurements. We also find that
higher measurements across all of these sensors are more
correlated with both survey and behavioral measurements
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reflecting positive thinking towards a robot (including non-
technophobia, reciprocal behaviors, and positive ratings of
the robot) during an interaction. Based on these results, we
argue that robot sensor usage is an important and objective
metric for HRI research.
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1 Introduction

Human-robot interaction (HRI) research is facing the same
questions today that psychology once did in the past—how
can one measure people’s innermost feelings and motiva-
tions in the most accurate, objective way? A large portion of
psychology research measures the human condition through
explicit measures such as surveys or behavioral analysis.
Similarly, HRI research has largely depended on these ex-
ternal measures to analyze people’s reactions to a robot. Al-
though subjective and explicit measures such as surveys are
easy to prepare and analyze, they are unnatural and lengthy
for the subject, and have high potential for response bias,
where subjects answer based on irrelevant motivations [1].
In recent decades, psychology has tended towards quantita-
tive methods that get at more objective, unbiased measures
of people’s cognitive states, including biosignal measure-
ment. One example is lie detection machines, which mea-
sure a person’s skin conductance to get at thoughts that are
concealed from that person’s outer behavior [2]. Along with
skin conductance, other biological measurements that are
frequently used in psychology research include hand tem-
perature [3], brain waves measured by electroencephalog-
raphy (EEG) [4], heart rate [5], and several others. Higher
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skin conductance means more hand sweat, which is linked
with higher stress [6]. Higher hand temperature (as well as
lower heart rate and lower blood pressure) has been linked
with relaxation [7]. Lastly, EEG data and eye contact and
focus data can give insight on attention. Although biosignal
usage is now a well-accepted methodology in the field of
psychology, this methodology has been surprisingly over-
looked in HRI research, with only a few studies in the field.
Strauss et al. are developing natural sensor systems, such as
gloves and bracelets, to collect biosensor information during
long-term psychology and human-computer interaction ex-
periments [8]. Munekata et al. conducted research on having
a robotic bear react to information taken from external skin
conductance sensors [9]. However, little work has attempted
to directly attach biosignal sensors to humanoid robots. In
this study, we use a robot to directly take biosignal measure-
ments, and we examine whether such biosignals are useful,
how they can be used, and what we can interpret from their
measurement.

The measurement of biosignal data by robots affords
many benefits that surveys and behavioral analysis alone do
not: it is fast, natural, and data-rich. First of all, no prepara-
tion is required from the user or the experimenter; there is no
attachment of sensors or training. At most, one would need
to calibrate the robot’s sensors to match a subject’s base-
line. Subjects can thus have a quick, casual interaction with
the robot and the robot can still collect meaningful data. The
robot can take thousands of blocks of data per minute—even
a quick thirty-second interaction can take a good enough
sample to make comparisons of inner state across different
types of people.

Second, the usage of robot sensors to collect data is ex-
tremely natural. Modern-day sensors are very discreet—
they are small and can be flawlessly integrated into a robot’s
design. Theoretically, subjects do not even need to know that
data are being collected from them (within human subjects
requirements). The currently proposed methodology also al-
lows humans to interact with robots in an ecologically valid
environment with no surveys to interrupt the pacing of the
interaction. Adding these sensors makes the robot sense in
a more “human” way—not just by vision sensors, but also
by touch. Humans use multimodal sensing—they regularly
form first impressions of people based on tactile measure-
ments from interactions such as handshakes [10]. People
also feel a stronger connection with a robot if they are able
to touch it—it helps them understand the robot better and
become less afraid [11].

Lastly, sensor information is very data-rich. A survey
only collects data at one point in time for a subject and
has high potential for bias [12]. Biosignal sensing, however,
takes constant measurements over time and can be sensitive
to minute changes in a person’s biosignal information while
also being robust against anomalies. Sensor data usage also

allows robots to integrate multimodal data (visual, tactile,
auditory, etc.) to create a full picture of their human partner.

This paper explores the potential for such biosignal data
to be used by robots to interpret human feelings towards an
interaction. We previously conducted three separate studies
[13–15] looking at using sensor data in HRI. Each study
was conducted consecutively, working to build upon the re-
sults of the previous study and also to adjust the methodol-
ogy and subject pool to create a cleaner experiment. Each
study in itself acts as a support of using robot sensor data
within a specific environment, but does not go into detail
for a methodology that can be applied to a wider range of
experiments. In this paper we combine the results and previ-
ously unreported data from these three studies, seeing what
generalizations we can make about the usage of biosignal
data. We reanalyze the results of these three studies using a
consistent methodology. We then use what we have learned
from these three studies to propose a general methodology
for collecting biosignal data from robots, which we believe
can be useful to other researchers wishing to replicate the
methodology with their own robot systems. Specifically, we
believe this methodology is applicable to any social, enter-
tainment, or caretaking robot that comes in physical contact
with a human, as it provides additional data useful for cre-
ating a more comfortable interaction with a human partner.
Additionally, to serve as a guide for data design and to pro-
vide a large database of several subject’s interactions with
robots, the data from our studies will be publicly available
online.

2 General Methodology

2.1 Robot System

All three studies used the HRP2-JSKNT humanoid robot, a
version of the HRP-2 robot by Kawada Industries, modified
by our laboratory. The robot is 154 cm tall, weighs 58 kg,
and has 30 Degrees of Freedom (DOF). There is added stere-
ovision in the head, which has seven DOF. There are also
additional three-fingered hands on each arm, with 2 DOF in
the thumb, 3 DOF in the index finger, and 1 DOF in the large
“middle” finger of the hand. The joints in the robot are made
compliant when interacting with people, so that they adjust
to a person’s movement—for example, when holding a per-
son’s hand, the robot’s joints adjust to the user’s hand size
without causing any discomfort. The robot’s fingers are cov-
ered in a thin layer of black foam at the fingertips and black
tape along the finger, so that the sensors underneath are in-
conspicuous and the hand is not unpleasant to touch or see.
Auto-balancing in the robot’s legs is also activated, so that
even if a subject pulls or pushes the robot during an interac-
tion, the robot does not fall over. Refer to Fig. 1 for a picture
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Fig. 1 A photograph of a user
shaking hands with the robot
during an experiment

of the robot in the middle of a handshake—one of the key
data-taking points in the studies described in this paper.

The robot’s programming is done in Euslisp, an object-
oriented version of LISP developed by the JSK Labora-
tory [16]. The programming also uses a Robot Operating
System (ROS) framework [17], to control multiple motor
streams (specifically, asynchronous control of the robot head
and arms) as well as to save sensor data in a uniform format.
Simple speech synthesis is also implemented in Studies 2
and 3, allowing the robot to utter set phrases to the user to
make the interaction more natural. Japanese speech synthe-
sis is done using the AquesTalk plugin developed by Aquest
[18], while English speech synthesis uses the open-source
plugin Festival [19]. The robot is given a cute, feminine car-
toonish voice, as selected by the general public in an open-
campus survey [13].

2.2 Sensor System

These studies focus on the data from four types of sensors:
temperature sensors, tactile sensors, force sensors, and cam-
eras. A diagram of the sensors on the robot’s hand can be
seen in Fig. 2. Force sensors and cameras were already in-
cluded in the robot, while the temperature sensors and tactile
sensors were added by our laboratory. There are force sen-
sors in each of the robot’s joints, measured in six directions:
x, y, z, roll, pitch, yaw. The robot uses one camera in its
eye region to conduct face tracking and to measure the dis-
tance to a subject’s face, based on a face recognition plugin
in the robot’s software framework. The temperature sensors
are SEMITEC 0.5 mm thick high-precision thermistors with
a sensing range of −50 °C to 125 °C, with 1 % accuracy.
There are three on each hand: one on the palm, one on the

thumb, and one on the index finger. The tactile sensors are
0.35 mm thick Standard 400 single-zone force sensing resis-
tors, with a sensitivity range of .1 N to 10 N and accuracy of
2 %. There are eight on each hand: two on the palm, two on
the thumb, two on the index finger, and two on the middle
finger.

We selected the above four sensors for various reasons. It
is intuitive to use sensors already built into the robot, specifi-
cally the force sensors and cameras. For newly attached sen-
sors, the temperature and tactile sensors have several quali-
ties that make them ideal for HRI. We propose keeping these
properties in mind when selecting sensors to use in HRI:

1. They should be small, ideally inexpensive
2. They should be easy to integrate with the existing cir-

cuitry in a robot’s hand
3. They should take data at a high frequency
4. Their data must be stable, requiring infrequent calibra-

tion and be resistant to disturbance
5. They should be useful for many applications (object

grasping and sensing)
6. They should require no external attachments on the user

While other sensors are frequently used in psycholog-
ical biosignal testing, there are still hurdles that prevent
their smooth usage with humanoid robots. The most com-
mon sensor in psychology research is the skin conductance
sensor, or galvanic skin response sensor [6]. Our laboratory
experimented with using a skin conductance sensor, but it
did not fit with the above for several reasons: skin conduc-
tance sensors require two continuous attachments to the user
(leads taped to two fingers), miniaturized versions are rare,
and their data are unstable, with a constant need for readjust-
ment of sensitivity. Heart rate, EEG, and similar sensors also
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Fig. 2 A diagram of the sensors
on the robot’s hand, and which
sensors were used for which
studies. There are also force
sensors on all joints of the
robot’s hand

require external attachments to the subject, which would di-
minish the naturalness and discreetness of the experimen-
tal environment. We encourage researchers to explore how
these sensors or other sensors could be adapted to fit into a
good HRI sensing system.

With the robot’s cameras, the only data taken during these
studies are face distances (calculated by face size). The cam-
eras used for this study are too low-resolution to do more
complex analysis. However, with more high-resolution cam-
eras, there are several measures that could serve as use-
ful biosignal information, including amount of eye contact,
pupil size, and emotional valence of facial expression, and
we also encourage researchers to explore the integration of
computational vision and multimodal information in HRI.

2.3 Data Analysis

The main hurdle in data analysis for this methodology is the
large amount of data. A flowchart of the general data analy-
sis steps can be seen in Fig. 3. In this paper, these steps were
reapplied to the three studies mentioned below, which previ-
ously used inconsistent methodologies. Through the follow-
ing steps, an experiment that begins with millions of lines of
data can be pared down to tens or hundreds of thousands of
lines of data, depending on the number of subjects and ex-
periment length. Each minute, the robot collects over 1,700
lines and approximately 1 gigabyte of data, which include
sensor data, program output data, point cloud data, image
data, and sound data. Data are stored in a ROS-bag, the data
format used by ROS to store the various data types aligned to

a timestamp from when the data was saved. At each point in
the experiment, the robot’s software is also creating a ROS-
msg (a String stream of data outputted in the same way as
the sensor data), which we call “experiment-action,” which
describes the point in the experiment for that timestamp (for
example: “begin-handshake”). Several steps are necessary
to pare the data down to a manageable level:

1. Create a text-file of relevant data through a parser.
A parsing script takes the sensor values and ROS-
msgs from all timestamp-aligned data for the rele-
vant experiment-actions and outputs them as comma-
separated values into a text file (a CSV file). No image
or audio data were included in the output file. The ex-
perimenter specifies as a parameter which experiment-
actions (such as “begin-handshake”) have useful data
to be parsed. For these experiments, we used instants
only when the user was firmly gripping the robot’s hand,
such as the experiment-action “start-handshake”. The
frequencies of data output differed across sensors on the
robot. To solve this, our parser found moments when the
sensor data were outputted a few nanoseconds apart, and
synchronized these to an average timestamp. All out-
putted lines had full sets of sensor data, except for the
more infrequent face distance measurements.

2. Add optional data through a video tagger. A video tag-
ger script allows the experimenter to replay video of the
experiment, pause it at key points and add ROS-msgs re-
lated to the video points. For example, if a subject waved
at the robot, the experimenter could use this tagger to
mark the beginning and endpoints of the wave. The ROS-
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Fig. 3 A flowchart showing the steps involved in turning sensor data
into biosignal interpretation. Blue boxes indicate data types, yellow
hexagons indicate script or software processing, and the lavender ovals

indicate output files. CSV indicates a comma-separated value file.
“Sub.” stands for Subject and demonstrates the combination of mul-
tiple subjects’ data

msg is then outputted as a timestamped user-specified
String (for example, subject-greeting = “wave”), which
is aligned with sensor data of the same timestamp.

3. Code behavior/survey data. The experimenter manually
inputs survey and behavior data (such as utterances of the
user) into a spreadsheet, which is then exported as a CSV
file.

4. Align behavior/survey data to sensor data. A file-
concatenating script attaches the relevant survey and be-
havioral data to the sensor data of the same subject, based
on a ROS-msg indicating subject number in the sensor
data.

5. Normalize the data amounts per subject. Amount of data
varies based on the amount of time a subject interacted
with the robot. This creates a bias where subjects who
interacted longer with the robot have more effect over
the data tendencies. For example, subjects who like the
robot may interact with it longer, causing them to skew
the data (temperature, tactile, etc.) to have stronger sig-
nificant differences than there actually are between pos-
itively and negatively feeling subjects. To eliminate this
bias, a script normalizes the data amount across subjects.
First, subjects with data inconsistencies (mainly, subjects

where there was a network error during the experiment
that prevented successful saving of the data) are elimi-
nated from the pool. Then, for each experiment-action,
the script finds the minimum number of lines of data in a
subject. The same number of lines is then taken as a ran-
dom sample from each subject, so that all subjects have
the same number of lines of data, and the same amount
of influence over the final data analysis.

The final comma-separated text file produced from this
processing is then outputted to statistical analysis software.
Person’s correlations are used between the full set of sen-
sor data and the full set of behavioral/survey data from each
study to look at correlations between biosignals and behav-
ioral reactions to the robot. Independent samples t-tests are
used to compare the full set of sensor data in a study between
two groups (such as by gender). Unless otherwise noted, all
statistical tests reported in the results for the following three
studies passed a significance level of p < 0.001. Measure-
ments are not reported for a group if they are not below a
p < 0.05 level of significance, or if multiple measures for
one biosignal (for example, the measures from the eight tac-
tile sensors) do not show a majority tendency in one direc-
tion. Specifically, temperature is only reported if all three
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temperature sensors agree, tactile measurements if at least
four of six or five of eight agree, and force measurements
if at least four of six, or all three x, y, and z agree. Face
distance measurements sometimes differ in sample size be-
cause the robot only outputted face distance data when it
detected a face, at a much lower frequency than other sensor
output.

Some abbreviations will be used to identify the data
from different sensors. The force sensors will be reported
as x, y, z, r (roll), pt (pitch), and yw (yaw). The tactile data
will be reported as tc0, tc1, tc2, tc3, tc4, tc5, tc6, and tc7, as
the eight tactile sensors on the robot’s right hand. The tem-
perature data will be reported as t0, t1, and t2 as the three
temperature sensors on the robot’s right hand.

One important methodological aspect to note is that the
sensors need not be calibrated for each subject in a multi-
subject experiment; subjects’ baseline measurements are un-
necessary. This is due to the fact that because there are sev-
eral subjects, individual differences should even out and not
have an effect on correlations of the data. For example, it
is unlikely that subjects who like the robot all happen to
participate in the experiment when the room is warm that
day. Because of this, we did not have to look at the average
or baseline temperatures for subjects as a part of the data
analysis—we only include them here for reference. When
this methodology is readapted for single user sensor reading
and prediction, then deviations from a baseline will have to
be monitored.

3 Study 1

3.1 Methodology

We reported initial findings and very preliminary hypothe-
ses in a workshop paper [13]; however the results have been
reanalyzed and solidified for the current paper. The goal of
this study was to see whether sensor data could produce any
statistically significant differences between groups of peo-
ple, as a first step in investigating this methodology. The
robot greeted people who visited our laboratory as a part
of a laboratory alumni open-house. The robot tracked peo-
ple’s faces and then selected a random greeting of a wave,
a bow, or a handshake when a person came into view. The
most biosignal data was taken during the handshake. 27 peo-
ple shook hands with the robot (24 male, 3 female), and all
had extensive experience with robots (though not necessar-
ily with the HRP-2). Subjects did not interact with the robot
for more than a few minutes. For this study, temperature
data and tactile data were only measured from two sensors
each. There was no time to administer a survey, so infor-
mation was collected on group differences that were easy to
identify—specifically, gender, lab membership, and content

of verbal utterances. Verbal utterances were coded blindly
from the video data for the existence of a clearly positive
word (such as “cool”) or a clearly negative word (such as
“scary”).

3.2 Results

In the original version of the study, we analyzed the data
as-is. However, in this study, the data was reanalyzed in
accordance with the methodology outlined in Sect. 2.3.
The average temperature readings were t0 : M = 27.2 °C,
SD = 1.7 °C and t1 : M = 26.2 °C, SD = 2.0 °C, tac-
tile measurements were unitless, and the average face dis-
tance was M = 1354.25 mm, SD = 345.1 mm. In terms
of gender, males had lower temperatures than women (t0 :
t (3070) = 14.306; t1 : t (3070) = 5.078) and farther face
distances (t (201) = 3.229,p < 0.005). Tactile, temperature,
and face distance readings, however did not have significant
differences. Current members of the laboratory (seven sub-
jects) versus alumni who were not current members (twenty
subjects) had higher forces (x : t (3192) = 2.721,p < 0.01;
y : t (3192) = 4.574, z : t (3192) = 2.527, p < 0.05), lower
hand temperatures (t0 : t (3192) = 10.023; t1 : t (3192) =
8.873), and farther face distances (t (305) = 3.343,p <

0.005). People who spontaneously made positive remarks
during the interaction (four subjects) versus negative re-
marks (three subjects) had lower hand temperatures
(t0 : t (824) = 30.673; t1 : t (824) = 32.409).

3.3 Discussion

The main purpose of this study was to act as a pilot study,
testing the concept of using sensor data to identify differ-
ences between people during HRI. Subjects spent very little
time with the robot, and there was a small number of sub-
jects in each group, which makes it difficult to make any
strong conclusions about the groups themselves. Perhaps the
comparison of current members versus alumni has the most
reliable measure because of the larger subject pool (seven
and twenty respectively), but we believe the results here on
gender and positive versus negative remarks have too low
subject numbers to be meaningful. However, we include this
study in this paper because it serves as the starting point
to the creation of this methodology, and demonstrates that
significant correlations can come out of sensor data. It also
serves as a point of comparison to the results of Study 2 be-
cause of the similarities in methodology.

4 Study 2

4.1 Methodology

We reported the main content of these findings in a Japanese
domestic conference paper [14]. The main purpose of this
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study was to build upon the ideas established in the pilot
study (Study 1) and to establish basic tendencies in how feel-
ings towards a robot correlate with sensor data. The method-
ology of Study 2 is similar to Study 1: the robot greeted
people with either a wave, bow, or handshake—with the data
analysis mainly focused on the handshake. However, instead
of having the robot interact only with people experienced
with robots, the robot was put outside on the University of
Tokyo campus and it greeted people who walked by. The
robot interacted with a wider range of people, most of them
people with no robotics experience at all. This study also
ran for a longer period of time—the robot was outside for
three hours, and greeted 70 people (49 male, 21 female).
Of these 70, a full set of data was successfully collected
from 62 subjects. Instead of focusing on solely demographic
group differences (gender, laboratory relationship, etc), we
also looked at behavioral cues related to feelings towards
the robot. While we did collect surveys, the fast pace of the
experiment forced us to keep the survey collection and the
robot interaction separate, so we could not match the sur-
vey data to the sensor data. From the sensors, measurements
were taken from all three temperature sensors, six out of
eight of the tactile sensors, and face distance data was not
taken, although percentage of eye-contact was hand-coded
by an experimenter by reviewing the video footage.

4.2 Results

The data analysis methodology used in the initial version
of the study without data normalization [13] showed similar
tendencies to the results of Study 1, however after a reanaly-
sis using normalization, stricter sensor agreement rules, and
the video-tagger to label positive and negative behavioral
data as outlined in Sect. 2.3, the data tendencies changed
as reported below, becoming more significant, and helping
us to establish our hypotheses for what to expect in sen-
sor data. For this study, the average temperature readings
were t0 : M = 21.8 °C, SD = 2.4 °C; t1 : M = 22.4 °C,
SD = 2.8 °C; and t2 : M = 21.8 °C, SD = 1.2 °C. Tactile
measurements as well as eye contact were unitless.

As in Study 1, we looked at demographic differences
and how they related to the sensor data. In terms of gender,
women had stronger forces than men (y : t (12862) = 8.009;
z : t (12862) = 3.155, p < 0.005; r : t (12862) = 10.121;
pt : t (12862) = 5.919; yw : t (12862) = 7.863), lower tactile
measurements (tc0 : t (12862) = 10.530; tc1 : t (12862) =
13.810; tc2 : t (12862) = 10.40; tc3 : t (12862) = 11.650;
tc4 : t (12862) = 10.464; tc5 : t (12862) = 12.127), lower
hand temperatures (t0 : t (12862) = 20.541; t1 : t (12862) =
17.598; t2 : t (12862) = 4.883) and less eye contact
(t (12862) = 5.166). Subjects were coded for nationality,
and people of Asian descent versus Western descent were
found to have significantly lower tactile measurements

(tc0 : t (12862) = 2.492, p < 0.05; tc2 : t (12862) = 3.111,
p < 0.005; tc3 : t (12862) = 4.390; tc5 : t (12862) = 4.403)
and less eye contact (t (12862) = 16.271). Some labora-
tory members also interacted with the robot, and compared
to those without robot experience, they had lower tactile
measurements (tc0 : t (12862) = 3.237, p < 0.005; tc1 :
t (12862) = 6.532; tc2 : t (12862) = 4.936; tc3 : t (12862) =
4.385; tc4 : t (12862) = 4.474; tc5 : t (12862) = 5.248) and
more eye contact (t (12862) = 10.126).

We also analyzed video of the interaction and recorded
several behavioral measures that reflect subjects’ views to-
wards the robot. While these measures were hand-coded by
the experimenter, they were obvious true/false values, and
we expect no experimenter bias:

1. Whether they returned non-handshake greetings (the
wave and bow) to the robot or not (20 subjects ver-
sus 14 subjects). Greeting reciprocation was correlated
with higher forces (y : t (7033) = 6.242; z : t (7033) =
11.829; r : t (7033) = 10.621; pt : t (7033) = 8.197;
yw : t (7033) = 4.412), lower temperature (t0 : t (7033) =
12.38; t1 : t (7033) = 9.03; t2 : t (7033) = 10.71), and
more eye contact (t (7033) = 7.11).

2. Whether they stopped the handshake with the robot
midway (5 subjects versus 57 subjects). “Giving up”
on the handshake was correlated with lower forces
(y : t (12862) = 4.709; z : t (12862) = 2.996, p < 0.005;
r : t (12862) = 2.627, p < 0.01; pt : t (12862) = 6.645;
yw : t (12862) = 2.087, p < 0.05), lower temperature
(t0 : t (12862) = 18.465; t1 : t (12862) = 16.337;
t2 : t (12862) = 7.949), and less eye contact (t (12862) =
18.827).

3. Whether they spontaneously made an obviously pos-
itive (ex: “cool!”) or an obviously negative remark
(ex: “scary!”) about the robot (19 subjects versus 13
subjects). More positive remarks were correlated with
higher tactile measurements (tc0 : t (6430) = 7.435; tc1 :
t (6430) = 6.828; tc2 : t (6430) = 5.936; tc3 : t (6430) =
5.318; tc4 : t (6430) = 6.746; tc5 : t (6430) = 5.560),
higher temperature (t0 : t (6430) = 6.522; t1 : t (6430) =
11.346; t2 : t (6430) = 2.952, p < 0.005), and more eye
contact (t (6430) = 15.547).

4. Whether they spontaneously conversed with the robot or
not (10 subjects versus 52 subjects). People who con-
versed with the robot were correlated with higher tactile
measurements (tc0 : t (12862) = 6.562; tc1 : t (12862) =
5.496; tc2 : t (12862) = 4.222; tc3 : t (12862) = 4.822;
tc4 : t (12862) = 4.553; tc5 : t (12862) = 5.633) and
more eye contact (t (12862) = 21.923).

4.3 Discussion

This study managed to expand upon the methodology es-
tablished in Study 1, by including a more general popula-
tion of people, with more subjects and more sensor data.
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Table 1 Example questions
from the four sections of the
technophobia survey
administered before the
experiment, along with the scale
on which subjects responded.
Sections 1–3 were adapted from
Weil et al.’s [20] survey, while
Sect. 4 was created for the
experiment. All questions had
five choices, and were scored
ranging from +2 for the most
technophobic response down to
−2 for the least technophobic
response. All items’ scores were
then summed to produce a total
technophobia score

Section 1: Computer Anxiety Rating Scale

How anxious would each item make you?

Thinking about taking a course in a computer language. Not at all—Very much

Getting “error messages” from the computer. Not at all—Very much

Section 2: Computer Thoughts Survey

How often do you think each item when using a computer?

I am going to make a mistake. Not at all—Very much

I enjoy learning about this. Not at all—Very much

Section 3: General Attitudes Towards Computers Scale

Circle your level of agreement.

Computers are taking over. Agree—Disagree

Computers are essential to life in modern society. Agree—Disagree

Section 4: General Attitudes Towards Robots Scale

Circle your level of agreement.

Humanoid robots are a potential threat to society. Agree—Disagree

I would like to buy a humanoid robot. Agree—Disagree

This study also establishes a pattern of how sensor data can
be interpreted positively or negatively. In general, behaviors
with positive tendencies tend to have higher temperature,
higher tactile measurements, higher forces on the robot’s
arm, and more eye contact (see Fig. 4). There is one excep-
tion in the lower temperature of subjects who reciprocated
non-handshake greetings. Perhaps these subjects were more
comfortable interacting with the robot at a distance (wav-
ing and bowing rather than shaking hands), however fur-
ther investigation would be needed to test this hypothesis.
Many measures still had a small number of subjects, such as
the number of subjects who gave up the handshake halfway.
This study also found different sensor data tendencies from
Study 1 in terms of demographic data—however, these two
samples (engineering alumni versus the general public) are
possibly too difficult to compare and make generalizations
from. After finding strong correlations in Study 2, we de-
signed Study 3 to test whether the same tendencies repeat
themselves in a more structured and controlled experimental
setting designed to take larger amounts of data per subject.

5 Study 3

5.1 Methodology

We reported some findings in an international conference
paper [15]; however there are added demographic results
in this current study that are not included in the original
paper. While Studies 1 and 2 focused on interactions in a

multi-user, unstructured environment, Study 3 focuses on
a one-on-one, structured setting, where subjects teach the
robot how to play rock-paper-scissors by directly moving
the robot’s arms and fingers to form each gesture. 38 peo-
ple (14 female, 24 male) of diverse backgrounds partici-
pated in the study, and 34 subjects’ data were used in the
final analysis (four subjects’ data were removed due to net-
work errors resulting in unrecorded data). Subjects shook
hands with the robot before and after the study, filled out
a survey measuring technophobia before the study (adapted
from the Technophobia Measurement Instrument developed
by Weil et al. [20]), and completed a survey measuring gen-
eral views towards the experiment and robot after the study.
Table 1 shows examples of questions in the pre-experiment
technophobia survey, while Table 2 shows examples of ques-
tions from the post-experiment survey. The subject’s hand
temperature was also measured before meeting the robot, to
serve as a baseline measurement. For this experiment, tem-
perature was taken from all three temperature sensors and
all eight tactile sensors. Temperature growth was also cal-
culated for each subject. Temperature growth measures how
much a subject’s temperature grows over the time of the ex-
periment based on a regression line calculated across the
temperature data, and it is marked by six metrics: the re-
gression slope of the measures from the three temperature
sensors (t0s, t1s, t2s) and the regression’s correlation coef-
ficient of the measures from the three temperature sensors
(t0r, t1r, t2r).
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Table 2 Examples of the types
of questions on the
post-experiment survey, along
with the scale on which subjects
responded

Demographics

Gender, Age, Nationality, University / Occupation, Field of Study

Interaction with the Robot

How did you feel about your interaction with the robot?

Scary 3 2 1 0 1 2 3 Not Scary

Interesting 3 2 1 0 1 2 3 Boring

Meaningful 3 2 1 0 1 2 3 Meaningless

Exciting 3 2 1 0 1 2 3 Unexciting

Open-Ended Questions

What would you name the robot?

What was missing from the robot that would make it feel more alive?

How did touching the robot affect your feelings towards it?

5.2 Results

The baseline temperatures measured by a infrared ther-
mometer reader averaged with M = 32.45 °C, SD = 1.59 °C
for the palm of the hand, and M = 30.95 °C, SD = 1.89 °C
for the back of the hand. The average temperature read-
ings from the robot were t0 : M = 36.4 °C, SD = 1.1 °C;
t1 : M = 35.4 °C, SD = 1.5 °C; and t2 : M = 35.3 °C, SD =
1.3 °C. Differences between the baseline measurement and
robot measurements are likely due to differences in calibra-
tion, but have no effect on the results of the study. Tactile
measurements and temperature growth measurements were
unitless, and the average face distance was M = 743.1 mm,
SD = 179.3 mm.

Demographic differences were analyzed to serve as a
point of comparison with Studies 1 and 2. For gender, fe-
males versus males had closer face distances (t (140095) =
86.598) and also higher levels of technophobia
(t (140095) = 140.060). Subjects were given a choice of
conducting the experiment and surveys in either Japanese or
English, based on the language most natural for them. The
language choices mapped onto nationality differences (all
Japanese subjects and most Asian subjects chose Japanese,
while all Western subjects chose English). Based on this
language dichotomy, subjects who chose Japanese (twenty
subjects) over English (eighteen subjects) had higher hand
temperatures (t0 : t (140095) = 61.186; t1 : t (140095) =
88.405; t2 : t (140095) = 41.661), lower tactile measure-
ments (tc0 : t (140095) = −3.128, p < 0.005;
tc2 : t (140095) = 4.540; tc3 : t (140095) = 5.978;
tc4 : t (140095) = 5.434; tc6 : t (140095) = 9.674; tc7 :
t (140095) = 25.274), farther face distances (t (140095) =
33.589), and less technophobia (t (140095) = 45.128). Sub-
jects of older age were linked with lower hand temper-
atures (t0 : r = 0.096; t1 : r = 0.189; t2 : r = 0.115),
lower temperature growth (t0r : r = 0.237; t0s : r = 0.225;
t1r : r = 0.254; t1s : r = 0.198; t2s : r = 0.153), closer face

distances (r = 0.120), and higher technophobia (r = 0.349).
Lastly, there were strong correlations based on university
field of study. Majoring in engineering, versus another sub-
ject (such as economics, theater, etc.) was more correlated
with lower hand temperatures (t0 : r = 0.072; t1 : r =
0.169; t2 : r = 0.145), lower temperature growth (t0r : r =
0.530; t0s : r = 0.525; t1r : r = 0.627; t1s : r = 0.437;
t2r : r = 0.217), closer face distances (r = 0.015), higher
tactile measurements (tc1 : r = 0.036; tc2 : r = 0.034;
tc5 : r = 0.140; tc6 : r = 0.079; tc7 : r = 0.056), and lower
technophobia (r = 0.090).

Several survey measures stood out as being correlated
with sensor data:

1. Technophobia. Subjects with higher technophobia (mean-
ing they were more anti-technology, and anti-robot) had
lower hand temperatures (t0 : r = 0.215; t1 : r = 0.109;
t2 : r = 0.140), closer face distances (r = 0.294), and
higher tactile measurements (tc1 : r = 0.066; tc2 : r =
0.036; tc3 : r = 0.007, p < 0.01; tc5 : r = 0.025; tc6 :
r = 0.019).

2. Rating the robot as “scary” versus “not scary”. Subjects
who rated the robot as more “scary” also tended to have
lower temperatures (t0 : r = 0.254; t1 : r = 0.188; t2 :
r = 0.061), lower temperature growth (t0r : r = 0.025;
t0s : r = 0.048; t2r : r = 0.034; t2s : r = 0.066), and
closer face distances (r = 0.055).

3. Rating the interaction as more “meaningless” versus
“meaningful”. Subjects who rated the interaction as more
“meaningless” tended to have lower temperatures (t0 :
r = 0.006, p < 0.05; t1 : r = 0.113; t2 : r = 0.133),
lower temperature growth (t0r : r = 0.134; t0s : r =
0.149; t1r : r = 0.222; t1s : r = 0.309; t2r : r = 0.014),
and farther face distances (r = 0.129).

4. Giving a more positive response (as scored by an exper-
imenter blind to the subjects’ other data) to the ques-
tion “How did touching the robot affect your feelings to-
wards it?” Subjects who gave a more positive response
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tended to have higher temperatures (t0 : r = 0.093; t1 :
r = 0.050; t2 : r = 0.170), lower temperature growth
(t0r : r = 0.167; t0s : r = 0.224; t1r : r = 0.262; t1s :
r = 0.192), and higher tactile measurements (tc0 : r =
0.038; tc1 : r = 0.100; tc2 : r = 0.018; tc3 : r = 0.011;
tc4 : r = 0.014; tc6 : r = 0.038; tc7 : r = 0.034).

5.3 Discussion

These demographic and survey data match the tendencies
found in Study 2. Again, more positive opinions towards
robots tend to be positively correlated with higher tem-
perature, higher tactile measurements, higher temperature
growth, and farther face distances (refer to Fig. 4). These
results also show that survey data show the same correlation
trends with sensor data as behavioral data do. In contrast to
these trends, more positive responses to the robot’s touch
were correlated with less temperature growth (though were
correlated with high temperatures overall). These subjects
had significantly higher starting hand temperatures than sub-
jects who gave negative responses (palm: r = 0.102,p <

0.001, back: r = 0.144,p < 0.001), indicating that there
may have been less room for these subjects’ temperatures to
grow. Also in contrast with the general trend, subjects who
found the experiment “meaningful” also had closer face dis-
tances than those who found it “meaningless”. We believe
face distance is a difficult value, and closer face distances
in this case could reflect interest in the study. We discuss
face distances in more detail in Sect. 6. In terms of usabil-
ity for future research, it appears that temperature has the
strongest and most stable correlations, followed by temper-
ature growth and face distance, followed by tactile measure-
ments, and then force measurements, based on sensor agree-
ment levels and strength of correlations.

This study also introduces the new measure of “tempera-
ture growth”. Temperature growth can be a useful measure,
at it can tell researchers how a subject’s feelings towards
a robot change over time. When incorporating temperature
growth in experiments, it is important to note that as a per-
son interacts with a robot, both the person’s hand tempera-
ture and the robot’s motor temperature are likely to increase.
Thus, it would be important to collect baseline data before-
hand for human hand and robot motor temperatures. How-
ever, as the current study is comparative amongst a diverse
pool of subjects, we expect no unrelated significant differ-
ences to emerge, and so such a baseline is not needed.

6 General Discussion

Each study accomplished a separate goal: Study 1 estab-
lished the ability of sensor data to recognize significant dif-
ferences between groups during a short experiment; Study 2

examined connections between sensor data and behavior
data with a more general subject pool; and Study 3 looked
at connections between sensor data and survey data with
a more focused interaction. Figure 4 shows a comparison
of the sensor data tendencies across the three studies. With
each study, the methodology has been refined and used in
different environments: large, unstructured, multi-user en-
vironments, as well as one-on-one instruction-based inter-
actions. While we looked at correlations in demographic
groups (gender, nationality, and laboratory membership), it
is still too early to make strong statements about the feel-
ings of these groups towards robots. Looking at Fig. 4, there
do seem to be some similar demographic tendencies across
studies—for example, lower hand temperatures for those
with more engineering experience across the three studies—
however, finding demographic group differences is not a
main point of this study. These differences in demographic
groups would be a possible avenue for future study. In terms
of the behavioral and survey data, there is general agreement
in correlation direction and strength in data across studies.
The few exceptions are discussed in the Discussion sections
of the corresponding studies above.

In terms of general feelings towards robots, the same
tendencies appear to play out across studies. Between the
different modalities of behavioral measurement and survey
measurement, there appears to be a link between positive at-
titudes towards robots and higher temperature, higher tem-
perature growth, higher tactile measurements, and farther
face distances. There does not appear to be any strong ten-
dency related to force. Initially when forming the hypothe-
ses for Study 1, we believed that higher hand temperature
would be linked with stress or excitement. However, the
sample size for Study 1 was small and we measured only
a single behavioral measure (verbal utterances—with four
in the positive group and three in the negative group). For
Studies 2 and 3, we looked at more obvious and plentiful
measures of views towards robots, including multiple be-
havioral measures and survey results. Study 3 was able to
replicate the results from Study 2, despite the different ex-
periment environment. Based on these results and also ex-
tensive psychology literature review, we have determined
that high hand temperature is likely linked to positive think-
ing towards robots. Psychology research has similarly found
a link between high hand temperature and relaxation, while
lower hand temperature has been linked with anxiety and
stress [3, 7]. Temperature also tended to increase over the
time course of the experiment, which likely indicates a sub-
ject getting warmer as they use their hands during the exper-
iment, and also a “warming up” in comfort to the robot over
time. Higher tactile measurements likely indicate a willing-
ness to touch a robot and lack of fear. In general, higher com-
munication through touch with others has been linked with
higher self esteem [21]. Lastly, face distance has two main
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possible interpretations. Based on previous research, we be-
lieve keeping a farther face distance indicates an affordance
of personal space to the robot, and thus an attribution of the
robot as a “social actor” rather than an “object” [22, 23].
This hypothesis could explain the consistent correlations be-
tween positive reactions to the robot and far face distances.
However, a far face distance could also indicate fear and re-
luctance to get close to the robot. Both factors likely interact
when a user determines the distance they should take from
the robot.

In terms of the statistical results of these experiments,
there is some question as to whether these correlations of
sensor data, behavior data, and survey data only happen by
chance—perhaps by data dredging [24]. Although some of
these correlations may be weakly correlated, the results are
all highly significant. Even when taking into account the po-
tential for Type I error (to assume there is an effect when
there isn’t one, and running so many statistical tests that
some are bound to come out significant just by chance), al-
most all of these correlations pass a Bonferroni correction
test. The Bonferroni correction is a conservative statistical
corrective method that adjusts alpha to account for the pos-
sibility of chance significant correlations. To perform it, one
divides alpha by the number of tests (0.05 divided by 13 for
the case of Study 3). Even so, almost all above statistical
tests still pass the resulting adjusted alpha of 0.0038, en-
suring that these correlations are in fact significant enough
to be meaningful. These experiments also use multiple sen-
sor measures and look at multiple behavioral and survey
items, meaning correlations showing similar tendencies are
more robust. However, in the above experiments, there were
still times when some sensors did not show any significant
correlations. When first using this methodology on a new
robot system in a natural environment and without the use of
surveys, multiple sensors and perhaps additional behavioral
measures (such as eye contact, vocal utterances, human-like
treatment of the robot, and reciprocation to the robot) should
be combined to analyze the HRI experiment.

Now that this paper has found significant correlations be-
tween sensor data and subjects’ feelings to a robot, the next
step is to find causal data that will eventually lead to pre-
dictions of human behavior. Modeling of the data as well
as experiments examining sensor data changes in a subject
in different experimental conditions (mild stress, relaxation,
attention, inattention, etc.) could lead to promising systems
for a robot to predict and adjust to a single user’s behav-
ior. One could imagine several useful applications of this
methodology. With only one subject, it would be easy to
make a system that can detect changes in sensor data over
time contrasted against a baseline learned over a acclimation
period with the user. Using the data minimization techniques
described in this paper, as well as consolidating less-salient

data into lower frequency data logs, would allow such a sys-
tem to be implemented with any normal computing capac-
ity. If a robot reads the sensor data from a user frequently
and suddenly detects a negative change in data, it could take
actions to relax or cheer up the user. As another applica-
tion of this methodology, a robot could potentially learn to
predict a new user’s level of technophobia based on their
aggregate sensor data in a quick interaction. A robot could
also combine biosignal information with already established
visual processing; for example, recognizing a user based on
handshake style when there is a potential for misidentifica-
tion using solely face recognition software. The methodol-
ogy presented in this paper can be useful for any robot that
touches humans. Gaming robots could detect a user’s stress
through a game controller and give the user breaks. Caretak-
ing robots could record patients’ thermoregulation abilities
to make inferences about a patient’s stimulant intake [25].
Friend robots could adjust their actions until they sense the
user is comfortable with them. With this methodology, there
is also potential for other sensors to deliver similarly use-
ful data—particularly skin conductance, EEG, and heart rate
sensors, if they can be attached to the robot in a non-invasive
way for the user. We propose that sensor data be incorpo-
rated into future HRI experiments, to act as an objective
support to survey data being taken during the experiment,
and also to add to our knowledge of how sensor data may
vary across experimental setups and robotic systems.

7 Conclusion

Overall, the combination of these three studies confirms the
usage of sensor data as viable biosignal data reflecting hu-
man views towards robots. This paper consolidates and rein-
terprets these three past studies to create a general method-
ology for how robot sensor data should be used as an ob-
jective measure in HRI, and outlines how to select sensors,
how to manage the data, and different experimental setups
that show proof-of-concept. These three studies show simi-
lar tendencies in the sensor data while also replicating the re-
sults with different subject groups and different experimen-
tal environments. Based on their results, in general, higher
hand temperature, higher temperature growth, higher tactile
measurements, and farther face distances indicate more pos-
itive feelings towards a robot. In order to facilitate future
study, the data from these studies will made publicly avail-
able at the first author’s research website. With these data,
researchers can try new analyses with data in the database
that were outside of the scope of the current paper using
similar tests as described in this paper. For future research,
robots could build personal sensor data profiles for each user
and sense daily changes in stress, attention, and relaxation
levels. These sensing methods could also serve as backup



Int J Soc Robot (2012) 4:303–316 315

methods to sense user emotions when face recognition or
voice recognition is difficult. Using sensor data as biosig-
nal data opens up many possibilities for robots to develop
as multimodal sensing creatures, and through its usage, HRI
has the potential to become more efficient, objective, and
natural.
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